A Review of Gas Sensors Based on Semiconducting Metal Oxide

Sounder. J *¹, P.Gowthaman¹, M. Venkatachalam¹, M.Saroja¹

¹Department of Electronics, Erode Arts and Science College (Autonomous), Erode.

Abstract: This study intends to provide a review of recent progress in gas sensors based on several theoretical and empirical investigations regarding semiconducting metal oxide nanostructures. Modified or doped oxide nano-wires, device structures such as electronic noses and low power consumption self-heated gas sensors, and their gas sensing performance has also been evaluate. Finally, the researcher also point out some challenges for prospect investigation and practical application.

Keywords: Gas sensors, semiconducting oxides.

I. Introduction

Yamazoe (1991) in his work revealed that the Semiconducting metal oxides have been decades to good gas sensing materials. Ethanol sensors based on SnO2 thick films have been commercialized for years. The researcher also demonstrated the reduction in crystal size would significantly increase the sensor performance [1]. This is because nano sized grains of metal oxides exhausted of carriers and exhibits much inferior conductivity than micro sized grain in ambient air. Hence, when exposed to target gases, they display greater conductance changes as more carriers from their attentive states to the conduction band than with micro sized grains. Thus, the technological challenge moved to the invention of materials with nano-crystals which maintained their constancy over long-term operation at high temperature [2].

According to Pan and Others (2001) oxide nanostructures has been inspired and facilitated by the convenience of obtaining large amounts of single crystalline nano wires the vapor transport [3] and vaporliquid-solids (VLS) methods [4]. Sberveglieri [5] and Yang [6] groups initiated the investigation of gas sensing properties of SnO2 nano-belts. Sberveglieri demonstrated the use of SnO2 nano-wires as sensor materials showing prominent current changes towards ethanol and CO respectively, in a synthetic air environment while Yang et al. demonstrated the first photochemical NO2 nanosensors operating at room temperature. In 2004, our group reported high performance ZnO nano wire sensors with a low detection limit of 1 ppm ethanol at 300 °C [7]. The gas sensor configurations and measurements, performance parameters, as well as theoretical fundamentals of gas sensor, Fabrication and Characterization of Gas Sensors metal oxide nanostructures sensors have been characterized in three ways: conductometric, field effect transistor (FET) and impedometric ones. Conductometric sensors are based on resistance changes caused by publicity of the sensor surface to a mark species. So far, two types of conduct metric nanowire gas sensors have been mainly fabricated: one is the film type, in which a film collected of nanowires is contacted by pairs of metal electrodes on a substrate (Figure 1a) or a ceramic tube (Figure 1b); the other is the particular nanowire type in which a lone nanowire bridges two metal electrodes on a deeply doped silicon substrate covered with SiO2 acting as insulating layer between the nanowire/electrode combination and the conducting silicon (Figure 2). In fabrication of film type nanosensors, nanowires products are pulverized to a pulp state and either directly painted or screen-painted [16] onto the substrates or tubes. But other approaches are report. Sometimes nanowire growth is included into device fabrication [17-20]: SiO2/Si substrates with patterned metal coatings were used to catalyze the growth of the metal oxide was coating also acts as electrodes contacting the sensing material. This type of sensor has lower resistance compared to the previous one because the nanowire expansion course is integrated into device fabrication. Well-aligned nanowire arrays have been fabricated into nanosensors to explore benefits in order.

Figure 1(a) shows MEMS structures with inter-digitized electrode [7] and Figure 1(b) gives the Schematics of nanowire gas sensors on ceramic tube [26].

DOI: 10.9790/1676-1202014754

The following figure 2 provides the schematic of the single nanowire field effect transistor.

For instance, Figure 3 shows the sensor device structure that has been adopted in exploring gas sensing properties of ZnO nanorods [21], in which ZnO nanorod arrays are sandwiched between the silicon substrate supporting their growth and an indium thin film that forms ohmic contact with the nanorods and the copper electrode. Another interesting approach to accumulate involves combining two vertically aligned CuO nanowire in which two pieces of nanowire arrays were attached to the copper plate and the micromanipulator tip (copper wire) and the distance between the two arrays can be adjusted. The sensor built in this style was reported to be capable of detecting air-diluted H2S at the parts per billion level [22]. However, these aligned nanowire arrays are grown by "bottom up" methods, and the orderliness is not as good as those fabricated via "top to bottom" approaches. Francioso and Son et al. employed microelectronics processes such as photolithography and plasma etching (demonstrated in Figure 4) to fabricate TiO2 [23] and ZnO [24] parallel nanowire arrays, respectively, and investigated their gas sensor behaviors. Son et al. [25] developed an alternative technique to construct wellaligned nanowire arrays, which takes advantage of the two facts: 1) the step edges of terraces are energetically positive for the nucleation of adatoms; step edges of terraces. They prepared uniform terraces on (0001) sapphire substrates by annealing a miscut sapphire substrate and minimized the ZnO evidence rate by using low laser pulse repetition rate as well as a shadow mask which blocks straight ZnO plume generated by laser ablationpulsed laser deposition

Figure 4 Schematic diagram illustrating the fabrication processes of the ZnO nanowire

device based on nanoscale spacer lithography (NSL): (a) thermal growth of SiO2 layer, (b) deposition of acarbon thin film (act as etch-stop layer in subsequent process), (c) plasmon enhanced chemical vapor position (PECVD) of SiO2 thin film (sacrificial layer), (d) sacrificial layer patterning, (e) atomic layer eposition (ALD) of ZnO thin film, (f) top view of the chip after plasma etching of ZnO, (g) sacrificial layermoval, and (h) top view of the ZnO nanowire device after metal electrode deposition [24].

Basically, the working principle of a FET type sensor is that the species adsorbed onto the channel surface can work as an extra virtual gate bias and hence cause changes in the apparent thresholdvoltage. However, the FET configuration of a sensor does not guarantee it work in the simple ideal way. For example, Andrei *et al.* [27] discovered that their SnO2 nanobelt FET can be modeled as two Schottky diodes connected back-to-back with a series resistance from the nanobelt separating thediodes and only work as a FET in the presence of hydrogen. Another interesting phenomenon observed by Zhang *et al.* is that the gate effect typical of a FET was substantially weakened when their In2O3nanowire transistors were exposed to high concentrations of NH3 (10%) [28]. They proposed that these NH3 molecules residing on the nanowire surface can be charged and discharged by sweeping the gatebias and hence effectively work as charge traps screening the electric field induced by the gate bias. Impedometric sensors are based on impedance changes and are operated under alternating voltage upon exposure to target species. Like conductometric sensors, there are two types of impedometric ones: film type [29] and single nanowire type [30]. But this group of sensors has not attracted as much attention as the conductometric sensor yet. The rest of Section 2 will be mainly focused on conductometric sensors.

Surface Reactions for Gas Sensors:

Semiconducting oxides generally owe their conductivity to their departure from stoichiometry .Defects such as interstitial cation or anion vacancies also play an important role in their conductivity.Target species can be confidential into two groups: oxidizing gases or electron acceptors such as NO2, which produce a decrease in the conductance of n-type semiconducting materials (*i.e.*, electrons are the major carriers, such as ZnO, SnO2,In2O3) and an increase in the conductance of p-typesemiconducting materials reducing gases or electron donors such as H2S, CO, H2 and water vapor, which act in a reverse manner. Interestingly, sensors based on TiO2 nano fibers have recently been reported not to undergo conductance decrease towardsoxidizing gas NO2 as they normally do [31].Figure 5 highlights the resistance response during cyclic exposure to 10 min pulses with increasing concentrations of NO2 mixed in dry air at various operating temperatures [31].

As shown in Figure 5, at higher meditation ranges the device resistance plummet before NO2 stimulus was detached. The authors attributed such an irregular response behavior to the conduction type inversion (n-to-p) of the sensing material whose transmission is surface-trap limited, owing to thehigh surface-to-volume ratio of this materialThere are two types of adsorption: physisorption, the first step of the relationship of the gas specieswith the sensor surface, and chemisorptions, which involves exchange of electrons between the adsorbed variety and the material surface. The major difference among these two processes is thatphysisorption is exothermic even as chemisorption is endothermic, precisely an activated process whose activation energy can be complete by thermal or non-balance ones such as illumination [2].

This leads to the fact that physisorption predominates in low temperature range whereas chemisorption dominates in advanced temperature variety. The sensing characteristics of metal oxides are widelyconsidered to be related with chemisorbed oxygen and water, which can act as intermediates catalyzing the charge transfer process between gas species and the mass and which complicate the study of gas sensing mechanisms. The major way they interfere with the gas sensing process is through fluctuations in the concentration and the charges of oxygen vacancies. Ahn et al. [32] investigate the effect of oxygen-situation-related defects on gassensing properties of their single ZnO nanowire gassensors and found that the gas sensitivity towards NO2 was linearly proportional to the photoluminescence intensity of oxygen-vacancy related defect. Their work proves evidence of the role that oxygen vacancies play in gas sensing. Recent development in the synthesis of single crystalline nanowires or nanobelts has inspired research into their gas sensing properties, which divulge important information about the reactionsbetween target species and metal oxide surfaces free from complications caused by grain margins. For example, single crystalline SnO2 nanobelts provided Moskovits et al. the opportunity to study urface reaction kinetics between the individual nanobelt surface and CO and fit the investigational data to the analytical model they derived [33]. Another example is that single crystalline SnO2 nanobelts with well-defined facets and also give Yang et al. the model to verify their results from numerical investigation into surface connections between SnO2 with NO2species: through first principle bulk functional theory DFT calculations. They establish unexpectedly that most stable adsorbed species involve an unexpected NO3 group doubly bonded to Sn centers, which was confirmed by their X-ray absorption spectroscopy studies on nanoribbons [34]. Nanowire/nanobelt diameter is usually on the order of several nanometers and is comparable to the Debye length and this often results in much larger sensitivity than their thin film or bulk counterparts. The size dependent characteristic has also been studied by some researchers. Liao et al. found that thin nanorods have a significantly better sensing performance than thick nanorods in the detection of C2H5OH and H2S (100 ppm) in air [21]. The gas performance of film type gas sensors can be limited not just by surface reaction processes, but also by the morphology and microstructure of the films.

Contact barriers among nanowires can also affect the gas sensing properties via affecting the resistance of the bulk material [35]. Generally, researchers use the power law, $S = a + bc\rho$, to fit the concentration-sensitivity curves of film type nanosensors, and Langmuir adsorption isotherm to fit the sensitivity-concentration curves of single nanowire gas sensors [36].

Performance Parameters

Sensitivity, response and recovery time, linear range, as well as limit of detection (LOD) are important performance parameters for gas sensors. The sensitivity of conductometric sensors is defined as the ratio of the device's resistance when exposed to target species to that in ambient air, exactly Rg/Ra (where R represents resistance, the subscript 'g' represents target gas, and 'a' represents ambient air) if the target gas is an oxidizing one, or Gg/Ga (G represents conductance) if it is areductive one. Response (recovery) time is defined as the time period needed for the device to undergo resistance changing from 10% (90%) to 90% (10%) of the value in equilibrium upon exposure to an oxidizing (reducing) analyze. According to its definition, the estimation of LOD is done via extrapolating the Rg/Ra versus concentration curve to $3\sigma/Ra$ (σ is the standard deviation of Ra), but very few references mention to have done it in this way [31,37]. This is mainly because of the morphological complexity of the porous sensor surface and lack of efficient model to fit the sensitivityconcentration curves. There are few problems in this field of study which can severely hinder real applications of metal oxide 1D nanostructures. First, the researchers in this community do not abide by a unified LOD when claiming the detection limit of their gas sensor reaches some ppb or ppm level. Generally they justlabel the lowest concentration of the analyze used in their test as the detection limit of their gas sensors. The second is lack of uniformity in the working temperature selected. Almost half the publications report a working temperature setting of 300 °C, and one quarter at 400 °C. The optimumworking temperature is not always explored. Third, as water vapor produces resistance changes for metal oxides, it is important to present humidity information. Fourth, very few researchers (except [30,38-40]) have worked outside the linear range or selectivity to facilitate industrial applications. Up to now, various metal oxides 1D nanostructures (SnO2 nano whiskers, In2O3 nanowires, ZnOnanorods, WO3 nanowires, TeO2 nanowires, CuO nanoribbons, CdO nanowires etc.) have been fabricated into film type nanosensors. As shown in Table 1, the most widely studied substances are

SnO2 and ZnO, probably due to the convenience of obtaining large quantities of SnO2[7] or ZnO nanowires [41] via thermal evaporation or a vapor-liquid-solid method. Actually the Table 1 serves as supplementary to another one in reference [42], which provides additional information on reported gas sensor properties. It's noteworthy that, in agreement with intuition, gas sensitivities of single nano wire gas sensors are invariably far less than those of nanowire film gas sensors, but the significance of single nanowire gas sensors is their potential application in microarray electronic noses [43]. The metrics of humidity senor involves more complicated procedures than sensors for other targetspecies in order to obtain reliable data. In the latter, the ambient gas is usually switched between airand a target gas diluted in air, which simulates real applications; in the former, the target gas (water vapor) has to be injected into a highly dry environment which requires pretreatment such as evacuation to remove water adsorbent in the chamber [44]. When testing is conducted under high vacuum, the usual concept, the concentration, used to represent the quantity of gas species present is replaced by an alternative one, the gas pressure of target species.

Figure 6 views(a) SEM images of ZnO brushes [67]. (b) SnO2 brushes [28]. (c) ZnO dendrites [68]. (d) ZnO nanoflowers [69].

Table -1: Gas sensing properties of metal oxide nanostructure special morphology.

Material	Gas species	Sensitivity	Response	Reference
ZnO brushes	Ethanol	3 (5 ppm)	<10 s/<10 s (10 ppm)	[67]
SnO2 brushes	Ethanol	2.3 (0.5 ppm)	4 s	[26]
ZnO dendrites	H2S	3.3 (10 ppm)	15–20 s/30–50 s	[68]
ZnO Nanoflowers	Ethanol	4.1 (1 ppm)	1–2 s/1–2 s	[69]

II. Conclusion

In a nutshell, numerous publications have reported on the gas sensor behaviors of metal oxide. Since the lowest detection concentration is a very important performance index for sensors, it is necessary to make a compile on the level achieved towards common target species (CO, NO2, NH3, ethanol, H2, H2S) of sensors fabricated from different metal oxide. Table 3 brings the result of such effort. This study pertains to refer to those who are all wish to publish new data in this area.

References

- [1]. Yamazoe, N. New approaches for improving semiconductor gas sensors. Sens. Actuat. B 1991, 5,7-19.
- [2]. Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Vomiero, A.; Sberveglieri, G. Quasi-onedimensional metal oxide semiconductors: Preparation, characterization and application aschemical sensors. *Prog. Mater. Sci.* **2009**, *54*, 1-67.
- [3]. Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of semiconducting oxides. Science 2001, 291,1947-1949.
- [4]. Morales, A.; Lieber, C.A. laser ablation method for the synthesis of crystalline semiconductor nanowires. *Science* **1998**, 279, 208-211.
- [5]. Comini, E.; Faglia, G.; Sberveglieri, G. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869-1871.
- [6]. Law, M.; Kind, H.; Messer, B.; Kim, F.; Yang, P.D. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. 2002, 41, 2405-2408.
- [7]. Wan, Q.; Li, Q.H.; Chen, Y.J.; Wang, T.H.; He, X.L.; Li, J.P.; Lin, C.L. Fabrication and ethanol
- [8]. sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654-3657.
- [9]. Raible, I; Burghard, M; Schlecht, Yasuda, U.A.; Vossmeyer, T. V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines. *Sens. Actuat. B.* **2005**, *106*, 730-735.
- [10]. Zhang, Y.; He, X.L.; Li, J.P.; Miao, Z.J.; Huang, F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. *Sens. Actuat. B.* 2008, 132, 67-73.
- [11]. Wang, Y; Ramos, I.; Santiago-Aviles. J. Electrical characterization of a single electrospun porous SnO2 nanoribbon in ambient air. Nanotechnology 2007, 18, 435704-1-4.

- [12]. Wang, Y; Ramos, I.; Santiago-Aviles, J. Detection of moisture and methanol gas using a single electrospun tin oxide nanofiber. *IEEE Sens. J.* 2007, 7, 1347-1348.
- [13]. Wang, G.; Ji, Y.; Huang X.R.; Yang, X.Q.; Gouma, P.I.; Dudley, M. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. *J. Phys. Chem. B* **2006**, *110*, 23777-82.
- [14]. Hao, R; Yuan, J.Y; Peng, Q. Fabrication and sensing behavior of Cr2O3 nanofibers via in situ gelation and electrospinning. *Chem. Lett.* 2006, 35, 1248-1249.
- [15]. Leon, N.; Figueroa, G.; Wang, Y; Ramos, I.; Furlan, R.; Pinto, N.; Santiago-Aviles, J. Electrospun tin oxide nanofibers. Nanotechnology II 2005, 5838, 21-28.
- [16]. Lau, M.; Dai, L.; Bosnick, K.; Evoy, S. Synthesis and characterization of TiOx nanowires using a novel silicon oxide support layer. *Nanotechnology* 2009, 20, 025602-1-7.
- [17]. Qi, Q.; Zhang, T.; Yu, Q.J.; Wang, R.; Zeng, Y.; Liu, L.; Yang, H.B. Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing. *Sens. Actuat. B.* 2008, 133, 638-643.
- [18]. Hsueh, T.J.; Chen, Y.W.; Chang, S.J.; Wang, S.F.; Hsu, C.L.; Lin, Y.R.; Lin, T.S.; Chen, I.C. ZnO nanowire-based CO sensors prepared on patterned ZnO: Ga/SiO2/Si templates. Sens.Actuat. B. 2007, 125, 498-503.
- [19]. Choi, Y.J.; Hwang, I.S.; Park, J.G.; Choi, K.J.; Park, J.H.; Lee, J.H. Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. *Nanotechnology* 2008, 19, 095508-1-4.
- [20]. Hsueh, T.J.; Hsu, C.L.; Chang, S.J.; Chen I.C. Laterally grown ZnO nanowire ethanol gas
- [21]. sensors. Sens. Actuat. B. 2007, 126, 473-477.
- [22]. Jung, T.H.; Kwon, S.I.; Park, J.H.; Lim, D.G.; Choi, Y.J.; Park, J.G. SnO2 nanowires bridged across trenched electrodes and their gas-sensing characteristics. Appl. Phys. A-Mater. Sci. Proc. 2008, 91, 707-710.
- [23]. Liao, L.; Lu, H.B.; Li, J.C.; He, H.; Wang, D.F.; Fu. D.J.; Liu, C. Size dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C, 2007, 111, 1900-1903.
- [24]. Chen, J.J.; Wang, K.; Hartman, L.; Zhou, W.L. H2S Detection by Vertically Aligned CuO Nanowire Array Sensors. J. Phys. Chem. C 2008, 112, 16017-16021.
- [25]. Francioso, L.; Taurino, A.M.; Forleo, A.; Siciliano, P. TiO2 nanowires array fabrication and gas sensing properties. Sens. Actuat. B. 2008, 130, 70-76.
- [26]. Ra, Y.W.; Choi, K.S.; Kim, J.H.; Hahn, Y.B.; Im, H.Y. Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors. Small 2008, 4, 1105-1109.
- [27]. Son, J.Y.; Lim, S.J.; Cho, J.H.; Kim, H.J. Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor. *Appl. Phys. Lett.* 2008, 93, 053109-1-3.
- [28]. Wan, Q.; Huang, J.; Xie, Z.; Wang, T.H.; Dattoli, E.N.; Lu, W. Branched SnO2 nanowires on metallic nanowire backbones for ethanol sensors application. *Appl. Phys. Lett.* 2008, 92, 102101.
- [29]. Andrei, P.; Fields, L.L; Zheng, J.P.; Cheng, Y.; Xiong, P. Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure. Sens. Actuat. B. 2007, 128, 226-234.
- [30]. Zhang, D.H.; Li, C.; Liu, X.L.; Kasai, J.; Mozume, T.; Ishikawa, H. Doping dependent NH3 sensing of indium oxide nanowires. Appl. Phys. Lett. 2003, 83, 1845-1847.
- [31]. Xu, J.H.; Wu, N.Q.; Jiang, C.B.; Zhao, M.H.; Li, J.; Wei, Y.G.; Mao, S.X. Impedance characterization of ZnO nanobett/Pd Schottky contacts in ammonia. *Small* 2006, 2, 1458-1461.
- [32]. Zhang, N.; Yu, K.; Li, L.J., Zhu, Z.Q. Investigation of electrical and ammonia sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO nanorod. *Appl. Surf.*
- [33]. Sci. 2008, 254, 5736-5740.
- [34]. Kim, I.D.; Rothschild, A.; Lee, B.H.; Kim, D.Y.; Jo, S.M. Tuller, H.L. Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers. Nano Lett. 2006, 6, 2009-2013.
- [35]. Ahn, M.W.; Park, K.S.; Heo, J.H.; Park, J.G.; Kim, D.W.; Choi, K.J.; Lee, J.H.; Hong, S.H. Gas sensing properties of defectcontrolled ZnO-nanowire gas sensor. *Appl. Phys. Lett.* 2008, 93, 263103.
- [36]. Zhang, Y.; Kolmakov, A.; Chretien, S.; Metiu, H.; Moskovits, M. Control of Catalytic Reactions at the Surface of a Metal Oxide Nanowire by manipulating electron density inside it. *Nano Lett.*2004, *4*, 403-407.
- [37]. Maiti, A.; Rodriguez, J.A.; Law, M.; Kung, P.; McKinney, J.R.; Yang, P.D. SnO2 Nanoribbons as NO2 Sensors: Insights from first principles calculations. *Nano Lett.* 2003, *3*, 1025-1028.
- [38]. Feng, P.; Wan, Q.; Wang, T.H. Contact-controlled sensing properties of flowerlike ZnO nanostructures. *Appl. Phys. Lett.* 2005, 87, 213111.
- [39]. Zhang D.H.; Liu, Z.Q.; Li, C. Tang, Tao; Liu, X.L.; Han, S.; Lei, B.; Zhou, C.W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. *Nano Lett.* 2004, 4, 1919-
- [40]. 1924.
- [41]. Rout, C.S.; Govindaraj, A.; Rao, C.N.R. High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires. J. Mater. Chem. 2006, 16, 3936-3941.
- [42]. Li, C.; Zhang, D.H.; Liu, X.L.; Han, S.; Tang, T.; Han, J.; Zhou, C.W. In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 2003, 82, 1613-1615.
- [43]. Zhang, Y.; He, X,L.; Li, J.P.; Miao, Z.J.; Huang, F. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. *Sens. Actuat. B* 2008, 132, 67-73.
- [44]. Meier, D.C.; Semancik, S.; Button, B.; Strelcov, E.; Kolmakova, A. Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms. *Appl. Phys. Lett.* 2007, *91*, 63118-63120.
- [45]. Chen, Y.Q.; Cui, X.F.; Zhang, K.; Pan, D.Y.; Zhang, S.Y.; Wang, B.; Hou, J.G. Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. *Chem. Phys. Lett.* 2003, 369, 16-20.
- [46]. Chen, P.C.; Shen, G.Z.; Zhou, C.W. Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures. IEEE Trans. Nanotech. 2008, 7, 668-682.
- [47]. Sysoev, V.V.; Button, B.K.; Wepsiec, K.; Dmitriev, S.; Kolmakov, A. Toward the Nanoscopic "Electronic Nose": Hydrogen vs Carbon Monoxide Discrimination with an Array of Individual Metal Oxide Nano- and Mesowire Sensors. *Nano Lett.* 2006, 6, 1584-1588.
- [48]. Hernandez-Ramirez, F.; Barth, S.; Tarancon, A. Casals, O.; Pellicer, E.; Rodriguez, J.; Rodriguez, A.R.; Morante, J.R. Mathur, S .Water vapor detection with individual tin oxidenanowires. *Nanotechnology* 2007, 18, 424016.
- [49]. Ying, Z.; Wan, Q.; Song, Z.T. SnO2 nanowhiskers and their ethanol sensing characteristics. *Nanotechnology* 2004, *15*, 1682-1684.
- [50]. Wang, B.; Zhu, L.F.; Yang, Y.H. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C 2008, 112, 6643-6647.

- [51]. Wang, B.; Zhu, L.F.; Yang, Y.H.; Xu, N.S. Yang, G.W. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C 2008, 112, 6643-6647.
- [52]. Huang, H.; Lee, Y.C.; Tan, O.K. High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature. *Nanotechnology* 2009, 20, 115501.
- [53]. Kuang, Q.; Lao, C.S.; Wang, Z.L.; Xie, Z.X.; Zheng, L.S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070-6071.
- [54]. Chu, X.F.; Wang, C.H.; Jiang, D.L. Chen, M.Z. Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction. *Chem. Phys. Lett.* **2004**, *399*, 461-464.
- [55]. Kaur, M.; Jain, N.; Sharma, K.; Bhattacharya, S.; Roy, M.; Tyagi, A.K.; Gupta, S.K.; Yakhmi, J.V. Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. *Sens.*
- [56]. Actuat. B. 2008, 133, 456-461.
- [57]. Xu, P.C.; Cheng, Z.X.; Pan, Q.Y.; Xu, J.Q.; Xiang, Q.; Yu, W.J.; Chu, Y.L. High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties. *Sens. Actuat. B.* 2008, 130, 802-808.
- [58]. Zeng, Z.M.; Wang, K.; Zhang, Z.X.; Chen J.J.; Zhou, W.L. The detection of H2S at room temperature by using individual indium oxide nanowire transistors. *Nanotechnology* 2009, 20, 045503.
- [59]. Xu, J.Q.; Chen Y.P.; Shen, J.N. Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. *Mater. Lett.* 2008, 62, 1363-1365.
- [60]. Wang, H.T.; Kang, B.S.; Ren, F.; Tien, L.C.; Sadik, P.W.; Norton, D.P.; Pearton, S.J.; Lin, J.S. Hydrogen-selective sensing at room temperature with ZnO nanorods. *Appl. Phys. Lett.* 2005, 86, 243503.
- [61]. Wang, C.H.; Chu, X.F.; Wu, M.W. Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens. Actuat. B. 2006, 113, 320-323.
- [62]. Yang, Z.; Li, L.M.; Wan, Q. High-performance ethanol sensing based on an aligned assembly of ZnO nanorods. Sens. Actuators B 2008, 135, 57-60
- [63]. Cao, Y.L.; Hu, P.F.; Pan, W.Y.; Huang, Y.D.; Jia, D.Z. Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction. *Sens. Actuat. B* 2008, *134*, 462-466.
- [64]. Ge, C.Q.; Bai, Z.K.; Hu, M.L. Preparation and gas-sensing property of ZnO nanorod-bundle thinfilms. *Mater. Lett.* 2008, 62, 2307-2310.
- [65]. Lupan, O.; Chai, G; Chow, L. Novel hydrogen gas sensor based on single ZnO nanorod. Microelectr. Eng. 2008, 85, 2220-2225.
- [66]. Rout, C.S; Hegde, M.; Rao, C.N.R. H2S sensors based on tungsten oxide nanostructures. Sens. Actuat. B 2008, 128, 488-493.
- [67]. Zhao, Y.M.; Zhu, Y.Q. Room temperature ammonia sensing properties of W18O49 nanowires, Sens. Actuat. B 2009, 137, 27-31.
- [68]. Liu, Z.F.; Yamazaki, T.; Shen, Y. Room temperature gas sensing of p-type TeO2 nanowires. *Appl. Phys. Lett.* 2007, *90*, 173119.
 [69]. Kim, Y.S.; Hwang, I.S.; Kim, S.J. CuO nanowire gas sensors for air quality control in automotive cabin. *Sens. Actuat. B* 2008, *135*,
- [69]. Kim, Y.S.; Hwang, I.S.; Kim, S.J. CuO nanowire gas sensors for air quality control in automotive cabin. *Sens. Actuat. B* **2008**, *135*, 298-303.
- [70]. Gou, X.L.; Wang, G.X.; Yang, J.S.; Park, J.; Wexler, D. Chemical synthesis. characterisation and gas sensing performance of copper oxide nanoribbons. J. Mater. Chem. 2008, 18, 965-969.
- [71]. Guo, Z.; Li, M.L.; Liu, J.H. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties. *Nanotechnology* 2008, 19, 245611.
- [72]. Zhang, Y.; Xu, J.Q.; Xiang, Q.; Li, H.; Pan, Q.Y.; Xu, P.C. Brush-Like Hierarchical ZnO Nanostructures: Synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 2009,113, 3430-3435.
- [73]. Zhang, N.; Yu, K.; Li, Q. Wan, Q. Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance. J. Appl. Phys. 2008, 103, 104305.
- [74]. Li, C.C.; Du, Z.F.; Li, L.M.; Yu, H.C.; Wan, Q.; Wang, T.H. Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature. Appl. Phys. Lett. 2007, 91, 032101.
- [75]. Ramírez, F.H.; Tarancón, A.; Casals, O.; Arbiol, AJ.; Rodríguez, R.; Morante, J.R. High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens. Actuat.B 2007, 121, 3-17.
- [76]. Arbiol, J.; Cirera, A.; Peiró, F.; Cornet, A.; Morante, J.R.; Delgado, J.J.; Calvino, J.J. Optimization of tin oxide nanosticks faceting for the improvement of palladium nanoclusters epitaxy. *Appl. Phys.Lett.* 2002, *80*, 329-331.
- [77]. Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. *Nano Lett.* 2005, 5, 667-673.
- [78]. Shen, Y.B.; Yamazaki, T.; Liu Z.F.; Meng D.; Kikuta T.; Nakatani, N.; Saito, M.; Mori, M. Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. *Sens.Actuat. B* 2009, 135, 524-529.
- [79]. Wang, H.T.; Kang, B.S.; Ren, F.; Tien, L.C.; Sadik, P.W.; Norton, D.P.; Pearton, S.J.; Lin, J.S.
- [80]. Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett. 2005, 86, 243503.
- [81]. Chang, S.J.; Hsueh, T.J.; Chen, I.C.; Hsieh, S.F.; Chang S.P.; Hsu, C.L.; Lin, Y.R.; Huang, B.R. Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption. *IEEE Trans.Nanotechnol.* **2008**, *7*, 754-759.
- [82]. Hsueh, T.J.; Chang, S.J.; Hsu, C.L.; Lin, Y.R.; Chen, I.C. Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption. *Appl. Phys. Lett.* **2007**, *91*, 053111.
- [83]. Chang, S.J.; Hsueh, T.J.; Chen, I.C.; Huang, B.R. Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. *Nanotechnology* 2008, 19, 175502.
- [84]. Shen, Y.B.; Yamazaki, T.; Liu, Z.F.; Meng, D.; Kikuta, T.; Nakatani, N.; Saito, M.; Mori, M. Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sens.
- [85]. Actuat. B 2009, 135, 524-529.
- [86]. Liao, L.; Mai, H.X.; Yuan, Q.; Lu, H.B.; Li, J.C.; Liu, C.; Yan, C.H.; Shen, Z.X.; Yu, T. Single CeO2 nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism. J. Phys. Chem. C 2008, 112, 9061-9065.
- [87]. Ramgir, N.S.; Mulla, I.S.; Vijayamohanan, K.P. A room temperature nitric oxide sensor actualized from Ru-doped SnO2 nanowires. Sens. Actuat. B 2005, 107, 708-715.
- [88]. Wan, Q.; Wang, T.H. Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem. Commun. 2005, 30, 3841-3843.
- [89]. Xue, X.Y.; Xing, L.L.; Chen, Y.J.; Shi, S.L.; Wang, Y.G.; Wang, T.H. Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods. J. Phys. Chem. C 2008, 112, 12157-12160.
- [90]. Chen, Y.J.; Zhu, C.L.; Wang, T.H. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. *Nanotechnology*. **2006**, *17*, 3012-3017.

- [91]. Chen, Y.J.; Zhu, C.L.; Wang, L.J.; Gao, P.; Cao, M.S. Shi, X.L. Synthesis and enhanced ethanolsensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods. *Nanotechnology* 2009, 20, 045502.
- [92]. Si, S.F.; Li, C.H.; Wang, X.; Peng, Q. Li, Y.D. Fe2O3/ZnO core-shell nanorods for gas sensors. *Sens. Actuat. B* 2006, *119*, 52-56.
 [93]. Wang, J.X.; Sun, X.W.; Xie, S.S.; Yang, Y.;Chen, H.Y.; Lo, G.Q.; Kwong, D.L. Preferential growth of SnO2 triangular
- nanoparticles on ZnO nanobelts. J. Phys. Chem. C 2007, 111, 7671-7675.
 [94]. Van, N.H.; Kim, H.R; Ju, B.K.; Lee, J.H. Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3. Sens, Actuat. B 2008, 133, 228-234.
- [95]. Chen, P.C.; Ishikawa, F.N.; Chang, H.K.; Ryu K.; Zhou, C.W. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. *Nanotechnology* 2009, 20, 125503.
- [96]. Goschni, J. An electronic nose for intelligent consumer products based on a gas analytical gradient microarray, *Microelectron. Engineer.* **2001**, 57-58, 693-704.
- [97]. Sysoev, V.V.; Goschnick, J.; Schneider, T. A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. *Nano Lett.* 2007, 7, 3182-3188.
- [98]. Strelcov, E; Dmitriev, S; Button, B.; Cothren, J.; Sysoev, V.; Kolmakov, A. Evidence of the selfheating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors. *Nanotechnology* **2008**, *19*, 355502.
- [99]. Prades, J.D.; Jimenez, R.D.; Hernandez, F.R.; Barth, S.; Cirera, A.; Rodriguez, A.R.; Mathur, S.; Morante, J.R. Ultralow power consumption gas sensors based on self-heated individual nanowires. *Appl. Phys. Lett.* 2008, 93, 123110.
- [100]. Faglia, G.; Baratto, C.; Sberveglieri, G.; Zha, M.; Zappettini, A. Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. *Appl. Phys. Lett.* 2005, 86, 011923.
- [101]. Lettieri, S.; Bismuto, A.; Maddalena, P.; Baratto, C.; Comini, E.; Faglia, G.; Sberveglieri, G.; Zanotti, L. Gas sensitive light emission properties of tin oxide and zinc oxide nanobelts. J. Non-Cryst. Solids 2006, 352, 1457-1460.
- [102]. Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Sberveglieri, G. Single crystal ZnO nanowires asoptical and conductometric chemical sensor. J. Phys. D 2007, 40, 7255-7259.
- [103]. Setaro, A.; Bismuto, A.; Lettieri, S.; Maddalena, P.; Comini, E.; Bianchi, S.; Baratto, C.; Sberveglieri, G. Optical sensing of NO2 in tin oxide nanowires at sub-ppm level. Sens. Actuat. B2008, 130, 391-395.
- [104]. Zhang, X.J.; Wang, G.F.; Zhang, W.; Hu, N.J.; Wu, H.Q.; Fang, B. Seed-mediated growthmethod for epitaxial array of CuO nanowires on surface of Cu nanostructures and its application as a glucose sensor. J. Phys. Chem. C 2008, 112, 8856-8862.
- [105]. Ansari, S.G.; Wahab, R.; Ansari, Z.A.; Kim, Y.S.; Khang, G.; Hajry, A.A.; Shin, H.S. Effect of nanostructure on the urea sensing properties of sol-gel synthesized ZnO. Sens. Actuat. B 2009,137, 566-573.
- [106]. Zhang, X.J.; Wang, G.F.; Wang, Q.; Zhao, L.J.; Wang, M.; Fang, B. Cupreous oxide nanobelts asdetector for determination of 1-Tyrosine. *Mater. Sci. Eng. B* 2009, 156, 6-9.